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The behavior of a crack in functionally graded
piezoelectric/piezomagnetic materials under
anti-plane shear loading

Z.-G. Zhou, L.-Z. Wu, B. Wang

Summary In this paper, the behavior of a crack in functionally graded
piezoelectric/piezomagnetic materials subjected to an anti-plane shear loading is investigated.
To make the analysis tractable, it is assumed that the material properties vary exponentially with
the coordinate parallel to the crack. By using a Fourier transform, the problem can be solved
with the help of a pair of dual integral equations in which the unknown variable is the jump of
the displacements across the crack surfaces. These equations are solved using the Schmidt
method. The relations among the electric displacement, the magnetic flux and the stress field
near the crack tips are obtained. Numerical examples are provided to show the effect of the
functionally graded parameter on the stress intensity factors of the crack.

Keywords Functionally graded piezoelectric/piezomagnetic materials, Schmidt method, Dual
integral equations, Crack

1
Introduction
Composite material consisting of a piezoelectric phase and a piezomagnetic phase has drawn
significant interest in recent years due to the rapid development in adaptive material systems. It
shows a remarkably large magnetoelectric coefficient, the coupling coefficient between the static
electric and magnetic fields, which does not exist in either constituent. In some cases, the
coupling effect in piezoelectric/piezomagnetic materials can even be a hundred times larger than
that in single-phase magnetoelectric materials. Consequently, they are extensively used as
electric packaging, sensors and actuators, e.g., magnetic field probes, acoustic/ultrasonic devices,
hydrophones and transducers responsible for electro-magneto-mechanical energy conversion
[1].When subjected to mechanical, magnetic and electrical loads in service, these
magneto-electro-elastic materials can fail prematurely due to some defects, e.g. cracks, holes,
etc., arising during their manufacturing processes. Therefore, it is of great importance to study
the magneto-electro-elastic interaction and fracture behaviors of magneto-electro-elastic
composites [2, 3]. The development of piezoelectric/piezomagnetic composites has its roots in
the early work of van Suchtelen [4] who proposed that the combination of
piezoelectric/piezomagnetic phases may exhibit a new material property – the magnetoelectric
coupling effect. Since then, few researchers have studied the magnetoelectric coupling effect in
composites, and most published research results were obtained in recent years [1–3, 5, 10]. On
the other hand, the development of functionally graded materials has demonstrated that they
have the potential to reduce the stress concentration and increase fracture toughness.
Consequently, the concept of functionally graded materials can be extended to the
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piezoelectric/piezomagnetic materials to improve the reliability of piezoelectric/piezomagnetic
materials and structures. Some applications of functionally graded piezoelectric materials have
been made [11, 12]. Recently, the fracture problems of functionally graded piezoelectric
materials have been considered [13–17]. However, relatively few works on the crack problem in
functionally graded piezoelectric/piezomagnetic materials have been carried out. To our
knowledge, the electro-elastic behavior of functionally graded piezoelectric/piezomagnetic
materials with a crack subjected to an anti-plane shear loading has not been studied by using the
Schmidt method [18–20]. Thus, the present work is an attempt to fill this requirement. Here, we
just attempt to give a theoretical solution for this problem.

In this paper, we attempt to extend the concept of functionally graded materials to
piezoelectric/piezomagnetic materials. The magneto-electro-elastic behavior of a crack in
functionally graded piezoelectric/piezomagnetic materials subjected to an anti-plane shear
stress loading is investigated using the Schmidt method [18–20]. The Fourier transform is
applied and a mixed boundary-value problem is reduced to a pair of dual integral equations. To
solve the dual integral equations, the jump of the displacements across the crack surfaces is
expanded in a series of Jacobi polynomials. This process is quite different from that adopted in
previous works [1–6, 8–17]. Numerical solutions are obtained for the stress intensity factors for
permeable crack surface conditions.

2
Formulation of the problem
It is assumed that there is a crack of length 2l in functionally graded piezoelectric/piezomagnetic
material planes, as shown in Fig. 1. The functionally graded piezoelectric/piezomagnetic
materials’ boundary-value problem for anti-plane shear is considerably simplified if we consider
only the out-of-plane displacement, the in-plane electric fields and the in-plane magnetic fields.
As discussed in [21], since no opening displacement exists for the present anti-plane problem,
the crack surfaces can be assumed to be in perfect contact.Accordingly, the electric potential, the
magnetic potential, the normal electric displacement and the magnetic flux are assumed to be
continuous across the crack surfaces. So, the boundary conditions of the present problem are (in
this paper, we just consider the perturbation fields):

{
�(1)

yz (x, 0+)= �(2)
yz (x, 0−)=−�0(x), |x|≤ l

w(1)(x, 0+)=w(2)(x, 0−), |x|> l
(1)




�(1)
yz (x, 0+)= �(2)

yz (x, 0−)
�(1)(x, 0+)=�(2)(x, 0−), D(1)

y (x, 0+)=D(2)
y (x, 0−)

�(1)(x, 0+)=�(2)(x, 0−), B(1)
y (x, 0+)=B(2)

y (x, 0−)
, |x|≤∞ (2)

w(1)(x, y)=w(2)(x, y)=0 for (x2+ y2)1/2 →∞ (3)

where �(i)
zk , D(i)

k and B(i)
k (k =x, y, i =1, 2) are the anti-plane shear stress, in-plane electric

displacement and in-plane magnetic flux, respectively. w(i), �(i) and �(i) are the mechanical
displacement, the electric potential and the magnetic potential, respectively. In this paper, �0(x)
is the anti-plane shear loading.Also, note that all quantities with superscript i(i =1, 2) refer to
the upper half plane 1 and the lower half plane 2, as shown in Fig. 1

Crack problems in nonhomogeneous piezoelectric/piezomagnetic materials do not appear to
be analytically tractable for arbitrary variations of material properties. Usually, one tries to
generate the forms of nonhomogeneities for which the problem becomes tractable. Similar to the
treatment of the crack problem for isotropic nonhomogeneous materials in [22–24], we assume
that the material properties are described by

c44 = c440e�x, e15 = e150e�x, �11 = �110e�x, q15 =q150e�x, d11 =d110e�x, �11 =�110e
�x (4)

where c440 is the shear modulus, e150 is the piezoelectric coefficient, �110 is the dielectric
parameter, q150 is the piezomagnetic coefficient, d110 is the electromagnetic coefficient, �110 is the
magnetic permeability and � is the functionally graded parameter.

It is assumed that the magneto-electro-elastic material is transversely isotropic. So, the
constitutive equations for the mode-III crack in the magneto-electro-elastic material can be
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Fig. 1. A crack in functionally graded piezoelectric/piezomagnetic
material

expressed as

�(i)
zk = c44w

(i)
k + e15�

(i)
k + q15�

(i)
k , (k =x, y, i =1, 2) (5)

D(i)
k = e15w

(i)
k − �11�

(i)
k −d11�

(i)
k , (k =x, y, i =1, 2) (6)

B(i)
k =q15w

(i)
k −d11�

(i)
k −�11�

(i)
k , (k =x, y, i =1, 2) (7)

The anti-plane governing equations are

c440

(
∇2w(i)+ �

�w(i)

�x

)
+ e150

(
∇2�(i)+ �

��(i)

�x

)
+ e150

(
∇2�(i)+ �

��(i)

�x

)
=0 (8)

e150

(
∇2w(i)+ �

�w(i)

�x

)
− �110

(
∇2�(i)+ �

��(i)

�x

)
−d110

(
∇2�(i)+ �

��(i)

�x

)
=0 (9)

q150

(
∇2w(i)+ �

�w(i)

�x

)
−d110

(
∇2�(i)+ �

��(i)

�x

)
−�110

(
∇2�(i)+ �

��(i)

�x

)
=0 (10)

where ∇2 =�2/�x2+ �2/�y2 is the two-dimensional Laplace operator.

3
Solutions
The system of the governing equations above is solved using the Fourier integral transform. The
general expressions for the displacement components, the electric potential and the magnetic
potential can be written as follows:




w(1)(x, y)= 1
2�

∫∞
−∞ A1(s)e−�ye−isxds

�(1)(x, y)=a0w(1)(x, y)+ 1
2�

∫∞
−∞ B1(s)e−�ye−isxds,

�(1)(x, y)=a1w(1)(x, y)+ 1
2�

∫∞
−∞ C1(s)e−�ye−isxds

(y ≥0) (11)




w(2)(x, y)= 1
2�

∫∞
−∞ A2(s)e�ye−isxds

�(2)(x, y)=a0w(2)(x, y)+ 1
2�

∫∞
−∞ B2(s)e�ye−isxds,

�(2)(x, y)=a1w(2)(x, y)+ 1
2�

∫∞
−∞ C2(s)e�ye−isxds

(y ≤0) (12)

where A1(s), B1(s), C1(s), A2(s), B2(s) and C2(s) are unknown functions, �=√s2+ is�, (Re 	≥0),
a0 = (�11e15 −d11q15)/(�11�11 −d2

11), a1 = (q15�11 −d11e15)/(�11�11 −d2
11).

So from Eqs. (5)–(7), we have

�(1)
yz (x, y)=−e�x

2�

∞∫
−∞

�[(c440+ a0e150+ a1q150)A1(s)+ e150B1(s)+ q150C1(s)]e−�ye−isxds (13)

D(1)
y (x, y)= e�x

2�

∞∫
−∞

�[�110B1(s)+ d110C1(s)]e−�ye−isxds (14)

B(1)
y (x, y)= e�x

2�

∞∫
−∞

�[d110B1(s)+ �110C1(s)]e−�ye−isxds (15)
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�(2)
yz (x, y)= e�x

2�

∞∫
−∞

�[(c440+ a0e150+ a1q150)A2(s)+ e150B2(s)+ q150C2(s)]e�ye−isxds (16)

D(2)
y (x, y)=−e�x

2�

∞∫
−∞

�[�110B2(s)+ d110C2(s)]e�ye−isxds (17)

B(2)
y (x, y)=−e�x

2�

∞∫
−∞

�[d110B2(s)+ �110C2(s)]e�ye−isxds (18)

To solve the problem, the jump of the displacements across the crack surfaces is defined as follows:

ƒ(x)=w(1)(x, 0+)−w(2)(x, 0−) (19)

Substituting Eqs. (11)–(12) into Eq. (19), applying the Fourier transform and the boundary
conditions, it can be shown that

ƒ̄(s)=A1(s)−A2(s) (20)

a0[A1(s)−A2(s)]+ B1(s)−B2(s)=0 (21)

a1[A1(s)−A2(s)]+ C1(s)−C2(s)=0 (22)

Substituting Eqs. (13)–(18) into Eqs. (1)–(3), it can be obtained

(c440+ a0e150+ a1q150)A1(s)+ e150B1(s)+ q150C1(s)+ (c440+ a0e150+ a1q150)A2(s)
+ e150B2(s)+ q150C2(s)=0 (23)

�110B1(s)+ d110C1(s)+ �110B2(s)+ d110C2(s)=0 (24)

d110B1(s)+ �110C1(s)+ d110B2(s)+ �110C2(s)=0 (25)

A superposed bar indicates a Fourier transform throughout the paper. By solving the six
equations (20–25) with six unknown functions and substituting the solutions into Eqs. (13)–(15)
and applying the boundary conditions (1–2) to the results, one obtains

1

2�

∞∫
−∞

ƒ̄(s)e−isxds=0, |x|> l (26)

c440e�x

2�

∞∫
−∞

�ƒ̄(s)e−isxds= �0(x), |x|≤ l (27)

To determine the unknown function ƒ̄(s), the above pair of dual integral equations (26–27) must
be solved.

4
Solution of the dual integral equations
From the natural property of the displacement along the crack line, it can be shown that the
jump of the displacements across the crack surface is a finite, continuous and differentiable
function. Hence, the jump of the displacements across the crack surfaces can be represented by
the following series:

ƒ(x)=
∞∑

n=0

bnP(1/2,1/2)
n

(x
l

) (
1− x2

l2

)1/2

, for |x|≤ l (28)

ƒ(x)=w(1)(x, 0+)−w(2)(x, 0−)=0, for |x|> l (29)

where bn are unknown coefficients to be determined and P(1/2 ,1/2 )
n (x) is a Jacobi polynomial [25].

The Fourier transform of Eqs. (28), (29) is [26]

ƒ̄1(s)=
∞∑

n=0

bnGn
1

s
Jn+1(sl), Gn =2

√
�(−1)nin �

(
n+ 1+ 1

2

)
n!

(30)



530

where �(x) and Jn(x) are the Gamma and Bessel functions, respectively.
Substituting Eq. (30) into Eqs. (26), (27), Eq. (26) has been automatically satisfied.After

integration with respect to x over the range [−l, x], Eq. (27) is reduced to

c440

4�

∞∑
n=0

bnGn

∞∫
−∞

i�
s2

Jn+1(sl)[e−isx − eisl]ds=
∫ x

−l
�0(s)e−�sds (31)

From the relationships in Ref. [25], the semi-infinite integral in Eq. (31) can be modified to

∞∫
−∞

�

s2
Jn+1(sl)[e−isx − eisl]ds=

{
2

n+1

{
cos

[
(n+ 1) sin−1 ( x

l

)]− (−1)(n+1)/2
}

, n=1, 3, 5, 7, ...
−2i
n+1

{
sin

[
(n+ 1) sin−1 ( x

l

)]+ (−1)
n
2
}

, n=0, 2, 4, 6, ...

+
∫ ∞

0

1

s

[�

s
−1

]
Jn+1(sl)[e−isx − eisl]ds

+
0∫

−∞

1

s

[�

s
+ 1

]
Jn+1(sl)[e−isx − eisl]ds (32)

Thus, the semi-infinite integral in Eq. (31) can be easily evaluated numerically. Equation (31) can
now be solved for the coefficients bn by the Schmidt method [18–20]. For brevity, Eq. (31) can be
rewritten as
∞∑

n=0

bnEn(x)=U(x), −l ≤x ≤ l (33)

where En(x) and U(x) are known functions and the coefficients bn are to be determined.A set of
functions Pn(x) that satisfy the orthogonality condition

l∫
−l

Pm(x)Pn(x)dx =Nn
mn, Nn =
l∫

−l

P2
n(x)dx (34)

can be constructed from the function, En(x), such that

Pn(x)=
n∑

i=0

Min

Mnn
Ei(x) (35)

where Mij is the cofactor of the element dij of Dn, which is defined as

Dn =




d00, d01, d02, ..., d0n
d10, d11, d12, ..., d1n
d20, d21, d22, ..., d2n
...........................
...........................
...........................

dn0, dn1, dn2, ..., dnn




, dij =
l∫

−l

Ei(x)Ej(x)dx (36)

Using Eqs. (33)–(36), we obtain

bn =
∞∑

j=n

qj
Mnj

Mjj
with qj = 1

Nj

l∫
−l

U(x)Pj(x)dx (37)

5
Intensity factors
The coefficients bn are known, so that the entire perturbation stress field, the perturbation
electric displacement field and the magnetic flux can be obtained. However, in fracture
mechanics, it is important to determine the perturbation stress �(1)

yz , the perturbation electric

displacement D(1)
y and the magnetic flux B(1)

y in the vicinity of the crack tips. In the case of the

present study, �(1)
yz , D(1)

y and B(1)
y along the crack line can be expressed, respectively, as
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�(1)
yz (x, 0)= �yz

=−c440e�x

4�

∞∑
n=0

bnGn

∞∫
−∞

�

s
Jn+1(sl)e−isxds

=−c440e�x

4�

∞∑
n=0

bnGn


 ∞∫

0

Jn+1(sl)e−isxds+
∞∫

0

�− s
s

Jn+1(sl)e−isxds

−
0∫

−∞
Jn+1(sl)e−isxds+

0∫
−∞

�+ s
s

Jn+1(sl)e−isxds


 (38)

D(1)
y (x, 0)=Dy =−e150e�x

4�

∞∑
n=0

bnGn

∞∫
−∞

�

s
Jn+1(sl)e−isxds

=−e150e�x

4�

∞∑
n=0

bnGn


 ∞∫

0

Jn+1(sl)e−isxds+
∞∫

0

�− s
s

Jn+1(sl)e−isxds

−
0∫

−∞
Jn+1(sl)e−isxds+

0∫
−∞

�+ s
s

Jn+1(sl)e−isxds


 (39)

B(1)
y (x, 0)=By =−q150e�x

4�

∞∑
n=0

bnGn

∞∫
−∞

�

s
Jn+1(sl)e−isxds

=−q150e�x

4�

∞∑
n=0

bnGn


 ∞∫

0

Jn+1(sl)e−isxds+
∞∫

0

�− s
s

Jn+1(sl)e−isxds

−
0∫

−∞
Jn+1(sl)e−isxds+

0∫
−∞

�+ s
s

Jn+1(sl)e−isxds


 (40)

For x> l, the singular parts of the stress field, the electric displacement field and the magnetic
flux can be expressed, respectively, as follows:

�1 =−c440e�x

4�

∞∑
n=0

bnGn


 ∞∫

0

Jn+1(sl)e−isxds−
0∫

−∞
Jn+1(sl)e−isxds


= c440e�x

2�

∞∑
n=0

bnGnQn(x) (41)

D1 =−e150e�x

4�

∞∑
n=0

bnGn


 ∞∫

0

Jn+1(sl)e−isxds−
0∫

−∞
Jn+1(sl)e−isxds


= e150e�x

2�

∞∑
n=0

bnGnQn(x) (42)

B1 =−q150e�x

4�

∞∑
n=0

bnGn


 ∞∫

0

Jn+1(sl)e−isxds−
0∫

−∞
Jn+1(sl)e−isxds


= q150e�x

2�

∞∑
n=0

bnGnQn(x) (43)

where

Qn(x)=
{

(−1)n/2ln+1√
x2−l2[x+√

x2−l2]n+1 , n=0, 2, 4, 6, ...
i(−1)(n+1)/2ln+1√

x2−l2[x+√
x2−l2]n+1 , n=1, 3, 5, 7, ...

For x<−l, the singular parts of the stress field, the electric displacement field and the magnetic
flux can be expressed, respectively, as follows:

�2 =−c440e�x

4�

∞∑
n=0

bnGn


 ∞∫

0

Jn+1(sl)e−isxds−
0∫

−∞
Jn+1(sl)e−isxds


= c440e�x

2�

∞∑
n=0

bnGnQ∗
n(x)

(44)
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D2 =−e150e�x

4�

∞∑
n=0

bnGn


 ∞∫

0

Jn+1(sl)e−isxds−
0∫

−∞
Jn+1(sl)e−isxds


= e150e�x

2�

∞∑
n=0

bnGnQ∗
n(x)

(45)

B2 =−q150e�x

4�

∞∑
n=0

bnGn


 ∞∫

0

Jn+1(sl)e−isxds−
0∫

−∞
Jn+1(sl)e−isxds


= q150e�x

2�

∞∑
n=0

bnGnQ∗
n(x)

(46)

where

Q∗
n(x)=




(−1)n/2ln+1√
x2−l2[|x|+√

x2−l2]n+1 , n=0, 2, 4, 6, ...

−i(−1)(n+1)/2ln+1√
x2−l2[|x|+√

x2−l2]n+1 , n=1, 3, 5, 7, ...

The results of the stress, the electric displacement and the magnetic flux intensity factors at the
right tip of the crack, respectively, are given as follows:

K(l)= lim
x→l+

√
2(x − l) · �1 = c440e�l

√
�l

∞∑
n=0

(−1)nbn
�
(
n+ 1+ 1

2

)
n!

(47)

KD(l)= lim
x→l+

√
2(x − l) ·D1 = e150e�l

√
�l

∞∑
n=0

(−1)nbn
�
(
n+ 1+ 1

2

)
n!

= e150

c440
K(l) (48)

KB(l)= lim
x→l+

√
2(x − l) ·B1 = q150e�l

√
�l

∞∑
n=0

(−1)nbn
�
(
n+ 1+ 1

2

)
n!

= q150

c440
K(l) (49)

The results of the stress, the electric displacement and the magnetic flux intensity factors at the
left tip of the crack, respectively, are given as follows:

K(−l)= lim
x→−l−

√
2(|x|− l) · �2 = c440e−�l

√
�l

∞∑
n=0

bn
�
(
n+ 1+ 1

2

)
n!

(50)

KD(−l)= lim
x→−l−

√
2(|x|− l) ·D2 = e150e−�l

√
�l

∞∑
n=0

bn
�
(
n+ 1+ 1

2

)
n!

= e150

c440
K(−l) (51)

KB(−l)= lim
x→−l−

√
2(|x|− l) ·B2 = q150e−�l

√
�l

∞∑
n=0

bn
�
(
n+ 1+ 1

2

)
n!

= q150

c440
K(−l) (52)

6
Numerical calculations and discussion
As discussed in other works [18–20], it can be seen that the Schmidt method performs
satisfactorily if the first ten terms of the infinite series in Eq. (33) are retained. The behavior of
the sum of the series is stable with increasing number of terms in Eq. (33). In the present paper,
it is assumed that the crack is only subjected to an anti-plane shear stress loading, and is not
subject to an electric field or a magnetic flux loading. From Eqs. (31), (47) and (50), one deduces
that the stress field does not depend on the shear modulus c440 but the crack length and the
gradient parameter of the functionally graded piezoelectric/piezomagnetic materials. So, in all
computation, the shear modulus c440 is not considered. The crack surface loading, −�0(x), will
simply be assumed to be a polynomial of the form as follows:

−�0(x)=−p0 −p1

(x
l

)
−p2

(x
l

)2
−p3

(x
l

)3
(53)

Since the problem is linear, the results can be superimposed in any suitable manner. The results
are obtained by taking only one of the four input parameters p0, p1, p2 and p3 to be nonzero at a
time. The normalized nonhomogeneity constant �l is varied between −2.8 and 2.8, which covers
most practical cases. The results of the present paper are shown in Figs. 2–5. From the results, the
following observations are very significant:
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under the loading �0(x)=p0

Fig. 3. Influence of �l on the stress intensity factors
under the loading �0(x)=p1x

(i) From the results, it can be shown that the singular stress, the singular electric displacement
and the singular magnetic flux in functionally graded piezoelectric/piezomagnetic materials
have the same forms as those in homogeneous piezoelectric/piezomagnetic materials or in
homogeneous piezoelectric materials for the anti-plane shear fracture problem, but the
magnitudes of the intensity factors depend significantly upon the gradient parameter of the
functionally graded piezoelectric/piezomagnetic materials, as discussed in [17].

(ii) From Eqs. (31), (47) and (50), it can be obtained that the stress field does not depend on
the shear modulus c440 but the crack length and the gradient parameters of the functionally
graded piezoelectric/piezomagnetic materials. The stress intensity factor depends on the
nonhomogeneity parameter �l. This is the same as the anti-plane shear fracture problem in
general nonhomogeneous elastic materials. However, the electric displacement and the magnetic
flux intensity factors depend on the nonhomogeneity parameter �l and the properties of the
magneto-electro-elastic composite materials. The electro-magneto-elastic coupling effects can
be obtained, as shown in Eqs. (47)–(52).

(iii) The solution of this problem can be reduced to that of homogeneous
piezoelectric/piezomagnetic materials for �l =0. From the results, it can be shown that the stress
intensity factor is equal to unity when �l =0 for a loading of �0(x)=p0, as shown in Figure 2. It
can also be shown that the stress intensity factor is equal to 0.5 when �l =0 for a loading of
�0(x)=p1(x/l), as shown in Fig. 3. This is consistent with the fracture problem in general elastic
materials for the anti-plane shear fracture problem. It has also been proved that the Schmidt
method can be used to solve this problem.

(iv) For the symmetric loading, the stress intensity factors at crack tips are symmetric about
the line �l =0, as shown in Figs. 2 and 4. However, for the antisymmetric loading, the stress
intensity factors at crack tips are symmetric about the point K =0 and �l =0, as shown in Figs. 3
and 5.

(v) For the symmetric loading, as shown in Figs. 2 and 4, the stress intensity factor at the right
tip of the crack tends to increase with an increase in the functionally graded parameter �l, until
reaching a maximum at �l =1.5, and then decreases in magnitude. However, the stress intensity
factor at the left tip of the crack tends to increase with an increase in the functionally graded
parameter �l, until reaching a maximum at �l =−1.5, and then decreases in magnitude.



534 Fig. 4. Influence of �l on the stress intensity factors
under the loading �0(x)=p2x2

Fig. 5. Influence of �l on the stress intensity factors
under the loading �0(x)=p3x2

(vi) For the antisymmetric loading, as shown in Figs. 3 and 5, the stress intensity factor at the
right tip of the crack tends to increase slowly with an increase in the functionally graded
parameter �l until �l =2.0, and then increases rapidly in magnitude. However, the stress
intensity factor at the left tip of the crack tends to increase rapidly with an increase in the
functionally graded parameter �l until �l =−2.0, and then increases slowly in magnitude. Hence,
stress intensity factors can be reduced by adjusting the functionally graded parameter �l
according to the form of the loading. These phenomena are caused by the changing of the
functionally graded parameter �l. The curves of the stress intensity factor K(l) in Figs. 3 and 5
are similar to the exponential curve.

(vii) The results of the electric displacement and the magnetic flux intensity factors can be
directly obtained form the results of the stress intensity factors through Eqs. (47)–(52). For the
electric displacement and the magnetic flux intensity factors, they follow the same rules as the
stress intensity factor shown in Eqs.(47)–(52). In the present paper, they are omitted.
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